Evaluación de la fibrosis miocárdica de la aurícula izquierda mediante la imagen por resonancia magnética cardíaca en la fibrilación auricular.

Palabras clave: fibrilación auricular, imagen por resonancia magnética, mapeo epicárdico, fibrosis

Resumen

La fibrilación auricular se inicia y se mantiene mediante factores desencadenantes y el sustrato auricular subyacente, por ende, se están utilizando técnicas de ablación modificadoras del sustrato anatómico. Sin embargo, ninguna de estas estrategias complementarias ha dado resultados consistentes. Las innovaciones en las técnicas de resonancia magnética nuclear cardíaca, especialmente las imágenes con realce tardío de gadolinio han mejorado nuestra capacidad para comprender mejor e identificar con precisión la fibrosis en el miocardio auricular de pacientes con fibrilación auricular. La consideración de la fibrosis auricular para el tratamiento terapéutico de la fibrilación auricular tiene el potencial de mejorar significativamente la comprensión y los resultados clínicos de la fibrilación auricular. Sin embargo, las técnicas de resonancia magnética nuclear cardíaca con realce tardío de gadolinio para evaluar la fibrosis de la aurícula izquierda todavía requieren de una experiencia significativa. Es necesario establecer más mejoras técnicas y métodos de obtención de imágenes más generalizados. Existe una amplia variación individual en la extensión de la fibrosis auricular izquierda en pacientes con fibrilación auricular. El mapeo de voltaje como herramienta para describir cambios fibróticos aún está bajo investigación. Depende de varias variables biológicas y tecnológicas y aún es necesario estandarizarlo. La combinación de un modelo de geometría pulmonar y de aurícula izquierda específico del paciente con una segmentación de cicatrices auriculares de procesamiento manual objetivo ciertamente será beneficiosa. Todas las estrategias de ablación más allá del aislamiento de las venas pulmonares, incluida la ablación guiada por fibrosis, deben confirmarse y validarse con respecto a la eficacia y la seguridad en estudios clínicos prospectivos multicéntricos aleatorizados.

 

Citas

1. Zhang Z, Vlcek J, Pauly V, Hesse N, Bauer J, Chataut KR, et al. Atrial fibrosis heterogeneity is a risk for atrial fibrillation in pigs with ischaemic heart failure. Eur J Clin Invest [Internet]. 2024 [cited 2024 Feb 1]; 54(4): e14137. Available from: https://pubmed.ncbi.nlm.nih.gov/38012826. doi: 10.1111/eci.14137
2. Arbelo E, Aktaa S, Bollmann A, D’Avila A, Drossart I, Dwight J, et al. Quality indicators for the care and outcomes of adults with atrial fibrillation. Europace [Internet]. 2021 [cited 2023 Oct 10]; 23(4):494–5. Available from: https://pubmed.ncbi.nlm.nih.gov/32860039. doi: 10.1093/europace/euaa253
3. Andrade J, Khairy P, Dobrev D, Nattel S. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ Res [Internet].2014 [cited 2023 Oct 10]; 114 (9):1453-68. Available from: https://pubmed.ncbi.nlm.nih.gov/24763464. doi: 10.1161/CIRCRESAHA.114.303211
4. Heijman J, Algalarrondo V, Voigt N, Melka J, Wehrens XHT, Dobrev D, Nattel S. The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical analysis. Cardiovasc Res [Internet]. 2016 [cited 2023 Oct 10];109(4):467-79. Available from: https://pubmed.ncbi.nlm.nih.gov/26705366. doi: 10.1093/cvr/cvv275
5. Gal P, Marrouche NF. Magnetic resonance imaging of atrial fibrosis: redefining atrial fibrillation to a syndrome. Eur Heart J [Internet]. 2017 [cited 2023 Oct 10];38(1):14-9. Available from: https://pubmed.ncbi.nlm.nih.gov/26409008. doi: 10.1093/eurheartj/ehv514
6. Yue L, Xie J, Nattel S. Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovasc Res [Internet]. 2011 [cited 2023 Oct 10];89(4):744-53. Available from: https://pubmed.ncbi.nlm.nih.gov/20962103. doi: 10.1093/cvr/cvq329
7. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC. Cardiac fibrosis: the fibroblast awakens. Circ Res [Internet]. 2016 [cited 2023 Oct 10];118(6):1021-40. Available from: https://pubmed.ncbi.nlm.nih.gov/26987915. doi: 10.1161/CIRCRESAHA.115.306565
8. Zahid S, Cochet H, Boyle PM, Schwarz EL, Whyte KN, Edward J Vigmond EJ, et al. Patient derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovasc Res [Internet]. 2016 [cited 2023 Oct 10];110(3):443-54. Available from: https://pubmed.ncbi.nlm.nih.gov/27056895. doi: 10.1093/cvr/cvw073
9. Kottkamp H, Schreiber D, Moser F, Rieger A. Therapeutic approaches to atrial fibrillation ablation targeting atrial fibrosis. JACC Clin Electrophysiol [Internet]. 2017 [cited 2023 Oct 10];3(7):643-53. Available from: https://pubmed.ncbi.nlm.nih.gov/29759532. doi: 10.1016/j.jacep.2017.05.009
10. Krul SP, Berger WR, Smit NW, van Amersfoorth SCM, Driessen AHG, van Boven WJ, et al. Atrial fibrosis and conduction slowing in the left atrial appendage of patients undergoing thoracoscopic surgical pulmonary vein isolation for atrial fibrillation. Circ Arrhythm Electrophysiol [Internet]. 2015 [cited 2023 Oct 10]; 8(2):288-95. Available from: https://pubmed.ncbi.nlm.nih.gov/25673630 . doi: 10.1161/CIRCEP.114.001752
11. Ma J, Chen Q, Ma S. Left atrial fibrosis in atrial fibrillation: Mechanisms, clinical evaluation and management. J Cell Mol Med [Internet]. 2021 [cited 2023 Oct 10];25(6):2764-75. Available from: https://pubmed.ncbi.nlm.nih.gov/33576189. doi: 10.1111/jcmm.16350
12. Nattel S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC Clin Electrophysiol [Internet]. 2017 [cited 2023 Oct 10] ;3(5):425-35. Available from: https://pubmed.ncbi.nlm.nih.gov/29759598. doi: 10.1016/j.jacep.2017.03.002
13. Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol [Internet]. 2008 [cited 2023 Oct 10];1(1):62-73. Available from: https://pubmed.ncbi.nlm.nih.gov/19808395. doi: 10.1161/CIRCEP.107.754564
14. Mulder MJ, Kemme MJB, Hagen AMD, Hopman LHGA, van de Ven PM, Hauer HA et al. Impact of local left atrial wall thickness on the incidence of acute pulmonary vein reconnection after ablation index-guided atrial fibrillation ablation. Int J Cardiol Heart Vasc [Internet]. 2020 [cited 2023 Oct 10]; 29:100574. Available from: https://pubmed.ncbi.nlm.nih.gov/32642554. doi: 10.1016/j.ijcha.2020.100574
15. Youn JY, Zhang J, Zhang Y, Chen H, Liu D, Ping P, et al. Oxidative stress in atrial fibrillation: an emerging role of NADPH oxidase. J Mol Cell Cardiol [Internet]. 2013 [cited 2023 Oct 10]; 62:72-9. Available from: https://pubmed.ncbi.nlm.nih.gov/23643589. doi: 10.1016/j.yjmcc.2013.04.019
16. Chen Y, Surinkaew S, Naud P, Qi XY, Gillis MA, Shi YF, et al. JAK-STAT signaling and the atrial fibrillation-promoting fibrotic substrate. Cardiovasc Res [Internet]. 2017 [cited 2023 Oct 10];113(3):310-20. Available from: https://pubmed.ncbi.nlm.nih.gov/28158495. doi: 10.1093/cvr/cvx004
17. Carver W, Goldsmith EC. Regulation of tissue fibrosis by the biomechanical environment. Biomed Res Int [Internet]. 2013 [cited 2023 Dec 18];2013: 101979. Available from: https://pubmed.ncbi.nlm.nih.gov/23781495. doi: 10.1155/2013/101979
18. Bouazizi K, Rahhal A, Kusmia S, Evin M, Defrance C, Cluzel P, et al. Differentiation and quantification of fibrosis, fat and fatty fibrosis in human left atrial myocardium using ex vivo MRI. PLoS One [Internet]. 2018 [cited 2023 Dec 18];13(10): e0205104. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175289. doi: 10.1371/journal.pone.0205104
19. Kawamura M, Munetsugu Y, Kawasaki S, et al. Type III procollagen-N-peptide as a predictor of persistent atrial fibrillation recurrence after cardioversion. Europace [Internet]. 2012 [cited 2023 Dec 18];14(12):1719-25. Available from: https://pubmed.ncbi.nlm.nih.gov/22622138. doi: 10.1093/europace/eus162
20. Rienks M, Papageorgiou AP, Frangogiannis NG, Heymans S. Myocardial extracellular matrix: an ever-changing and diverse entity. Circ Res [Internet]. 2014 [cited 2023 Dec 18];114(5):872-88. Available from: https://pubmed.ncbi.nlm.nih.gov/24577967. doi: 10.1161/CIRCRESAHA.114.302533
21. Halper J, Kjaer M. Basic components of connective tissues and extracellular matrix: elastin, fibrilin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Adv Exp Med Biol. 2014; 802: 31-47. doi: 10.1007/978-94-007-7893-1_3
22. McDowell KS, Zahid S, Vadakkumpadan F, Blauer J, MacLeod RS, Trayanova NA. Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling. PLoS One [Internet]. 2015 [cited 2023 Dec 18];10(2): e0117110. Available from: https://pubmed.ncbi.nlm.nih.gov/25692857. doi: 10.1371/journal.pone.0117110
23. Zhao J, Hansen BJ, Wang Y, Csepe TA, Sul LV, Tang A, et al. Three-dimensional integrated functional, structural, and computational mapping to define the structural “fingerprints” of heart-specific atrial fibrillation drivers in human heart ex vivo. J Am Heart Assoc [Internet]. 2017 [cited 2023 Dec 18]; 6(8): e005922. Available from: https://pubmed.ncbi.nlm.nih.gov/28862969. doi: 10.1161/JAHA.117.005922
24. Ashihara T, Haraguchi R, Nakazawa K, Namba T, Ikeda T, Nakazawa Y, et al. The role of fibroblasts in complex fractionated electrograms during persistent/permanent atrial fibrillation: implications for electrogram-based catheter ablation. Circ Res [Internet]. 2012 [cited 2023 Dec 18];110(2):275-84. Available from: https://pubmed.ncbi.nlm.nih.gov/22179057. doi: 10.1161/CIRCRESAHA.111.255026
25. Aguilar M, Qi XY, Huang H, Comtois P, Nattel S. Fibroblast electrical remodeling in heart failure and potential effects on atrial fibrillation. Biophys J [Internet]. 2014 [cited 2023 Dec 18];107(10):2444-55. Available from: https://pubmed.ncbi.nlm.nih.gov/25418313. doi: 10.1016/j.bpj.2014.10.014
26. Hopman LHGA, Bhagirath P, Mulder MJ, Eggink IN, van Rossum AC, Allaart CP, Götte MJW. Quantification of left atrial fibrosis by 3D late gadolinium-enhanced cardiac magnetic resonance imaging in patients with atrial fibrillation: impact of different analysis methods. Eur Heart J Cardiovasc Imaging [Internet]. 2022 [cited 2023 Dec 18];23(9):1182-90. Available from: https://pubmed.ncbi.nlm.nih.gov/35947873. doi: 10.1093/ehjci/jeab245
27. McDowell KS, Vadakkumpadan F, Blake R, Blauer J, Plank G, Macleod RS, Trayanova NA. Mechanistic inquiry into the role of tissue remodeling in fibrotic lesions in human atrial fibrillation. Biophys J [Internet]. 2013 [cited 2023 Dec 18];104(12):2764-73. Available from: https://pubmed.ncbi.nlm.nih.gov/23790385. doi: 10.1016/j.bpj.2013.05.025
28. Lee DK, Shim J, Choi JII, Kim YH, Oh YW, Hwang SH. Left atrial fibrosis assessed with cardiac MRI in patients with paroxysmal and those with persistent atrial fibrillation. Radiology [Internet]. 2019 [cited 2023 Dec 18]; 292(3):575-82. Available from: https://pubmed.ncbi.nlm.nih.gov/31310173. doi: 10.1148/radiol.2019182629
29. Centurión OA, Isomoto S, Shimizu A. Electrophysiological changes of the atrium in patients with lone paroxysmal atrial fibrillation. J Atr Fibrillation [Internet] 2010 [cited 2023 Dec 18]; 3(1):232. Available from: https://pubmed.ncbi.nlm.nih.gov/28496655. doi: 10.4022/jafib.232
30. Centurión OA, Shimizu A, Isomoto S, Konoe A, Kaibara M, Hayano M, Yano K. Influence of advancing age on fractionated right atrial endocardial electrograms. Am J Cardiol. 2005; 96(2):239-42. doi: 10.1016/j.amjcard.2005.03.052
31. Centurión OA, Shimizu A, Isomoto S, Konoe A. Mechanisms for the genesis of paroxysmal atrial fibrillation in the Wolf-Parkinson-White syndrome: Intrinsic atrial muscle vulnerability vs. electrophysiological properties of the accessory pathway. Europace [Internet]. 2008 [cited 2023 Dec 18];10(3):294-302. Available from: https://pubmed.ncbi.nlm.nih.gov/18308751. doi: 10.1093/europace/eun031
32. Anyukhovsky EP, Sosunov EA, Chandra P, Rosen TS, Boyden PA, Danilo Jr P, Rosen MR. Age-associated changes in electrophysiologic remodeling: a potential contributor to initiation of atrial fibrillation. Cardiovasc Res [Internet]. 2005 [cited 2023 Dec 18];66(2): 353-63. Available from: https://pubmed.ncbi.nlm.nih.gov/15820204. doi: 10.1016/j.cardiores.2004.10.033
33. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J [Internet]. 2021 [cited 2023 Dec 18];42(5):373-498. Available from: https://pubmed.ncbi.nlm.nih.gov/32860505. doi: 10.1093/eurheartj/ehaa612
34. Goette A, Kalman JM, Aguinaga L, Akar J, Cabrera JA, Chen SA, et al. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: Definition, characterisation, and clinical implication. J Arrhythm [Internet]. 2016 [cited 2023 Dec 18];32(4):247-78. Available from: https://pubmed.ncbi.nlm.nih.gov/27588148. doi: 10.1016/j.joa.2016.05.002
35. Cochet H, Mouries A, Nivet H, Sacher F, Derval N, Arnaud Denis, et al. Age, atrial fibrillation, and structural heart disease are the main determinants of left atrial fibrosis detected by delayed-enhanced magnetic resonance imaging in a general cardiology population. J Cardiovasc Electrophysiol. 2015; 26(5):484-92. doi: 10.1111/jce.12651
36. Marrouche NF, Wilber D, Hindricks G, Jais P, Akoum N, Marchlinski F, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA [Internet]. 2014 [cited 2023 Dec 18]; 311(5):498-506. Available from: https://pubmed.ncbi.nlm.nih.gov/24496537. doi: 10.1001/jama.2014.3
37. Akoum N, Wilber D, Hindricks G, Jais P, Cates J, Marchlinski F, et al. MRI assessment of ablation-induced scarring in atrial fibrillation: analysis from the DECAAF study. J Cardiovasc Electrophysiol 2015;26(5):473-80. doi: 10.1111/jce.12650
38. Elliott AD, Mahajan R, Pathak RK, Lau DH, Sanders P. Exercise training and atrial fibrillation: further evidence for the importance of lifestyle change. Circulation [Internet] 2016 [cited 2023 Dec 18];133(5):457-9. Available from: https://pubmed.ncbi.nlm.nih.gov/26733608. doi: 10.1161/CIRCULATIONAHA.115.020800
39. Daccarett M, Badger TJ, Akoum N, Burgon NS, Mahnkopf Ch, Vergara G, et al. Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. J Am Coll Cardiol [Internet]. 2011; [cited 2023 Dec 18];57(7):831-8. Available from: https://pubmed.ncbi.nlm.nih.gov/21310320. doi: 10.1016/j.jacc.2010.09.049
40. Lip GYH, Nieuwlaat R, Pisters R, Lane DA, Crijns HJGM. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest. 2010;137(2):263-72. doi: 10.1378/chest.09-1584
41. Healey JS, Connolly SJ, Gold MR, Israel CW, Van Gelder IC, Capucci A, et al. Subclinical atrial fibrillation and the risk of stroke. N Engl J Med [Internet]. 2012 [cited 2023 Dec 18];366(2):120-9. Available from: https://pubmed.ncbi.nlm.nih.gov/22236222. doi: 10.1056/NEJMoa1105575
42. Disertori M, Quintarelli S, Grasso M, Pilotto A, Narula N, Favalli V, et al. Autosomal recessive atrial dilated cardiomyopathy with standstill evolution associated with mutation of Natriuretic Peptide Precursor A. Circ Cardiovasc Genet [Internet]. 2013 [cited 2023 Dec 18];6(1):27-36. Available from: https://pubmed.ncbi.nlm.nih.gov/23275345. doi: 10.1161/CIRCGENETICS.112.963520
43. Akkaya M, Higuchi K, Koopmann M, Damal K, Burgon NS, Kholmovski E, et al. Higher degree of left atrial structural remodeling in patients with atrial fibrillation and left ventricular systolic dysfunction. J Cardiovasc Electrophysiol. 2013; 24(5):485-91. doi: 10.1111/jce.12090
44. Rossi VA, Krizanovic-Grgic I, Steffel J, Hofer D, Wolber T, Brunckhorst CB, et al. Predictors of left atrial fibrosis in patients with atrial fibrillation referred for catheter ablation. Cardiol J [Internet]. 2022 [cited 2023 Dec 18];29(3):413-22. Available from: https://pubmed.ncbi.nlm.nih.gov/35285513. doi: 10.5603/CJ.a2022.0012
45. Badger TJ, Daccarett M, Akoum NW, Adjei-Poku YA, Burgon NS, Haslam TS, et al. Evaluation of left atrial lesions after initial and repeat atrial fibrillation ablation: lessons learned from delayed-enhancement MRI in repeat ablation procedures. Circ Arrhythm Electrophysiol [Internet]. 2010 [cited 2023 Dec 18];3(3):249-59. Available from: https://pubmed.ncbi.nlm.nih.gov/20335558. doi: 10.1161/CIRCEP.109.868356
46. Jadidi AS, Cochet H, Shah AJ, Kim SJ, Duncan E, Miyazaki S, et al. Inverse relationship between fractionated electrograms and atrial fibrosis in persistent atrial fibrillation: combined magnetic resonance imaging and high-density mapping. J Am Coll Cardiol [Internet] 2013 [cited 2023 Dec 18];62(9):802-12. Available from: https://pubmed.ncbi.nlm.nih.gov/23727084. doi: 10.1016/j.jacc.2013.03.081 DUPLICADO CON EL N° 71)
47. Malcolme-Lawes LC, Juli C, Karim R, Quest R, Lim PB, Jamil-Copley S, et al. Automated analysis of atrial late gadolinium enhancement imaging that correlates with endocardial voltage and clinical outcomes: a 2-center study. Heart Rhythm [Internet]. 2013 [cited 2023 Dec 18];10(8):1184-91. Available from: https://pubmed.ncbi.nlm.nih.gov/23685170. doi: 10.1016/j.hrthm.2013.04.030
48. Harrison JL, Jensen HK, Peel SA, Chiribiri A, Grøndal AK, Bloch LØ, et al. Cardiac magnetic resonance and electroanatomical mapping of acute and chronic atrial ablation injury: a histological validation study. Eur Heart J [Internet]. 2014 [cited 2023 Jul 2];35(22):1486-95. Available from: https://pubmed.ncbi.nlm.nih.gov/24419806. doi: 10.1093/eurheartj/eht560
49. Valles-Colomer A, Rubio Forcada B, Soto-Iglesias D, Planes X, Trueba R, Teres Ch, et al. Reproducibility analysis of the computerized tomography angiography-derived left atrial wall thickness maps. J Interv Card Electrophysiol. 2023; 66(5):1045-105. doi:10.1007/s10840-023-01472-5
50. Nakamura K, Funabashi N, Uehara M, Ueda M, Murayama T, Takaoka H, Komuro I. Left atrial wall thickness in paroxysmal atrial fibrillation by multislice-CT is initial marker of structural remodeling and predictor of transition from paroxysmal to chronic form. Int J Cardiol. 2011; 148(2):139–47. doi: 10.1016/j.ijcard.2009.10.032
51. Akoum N, McGann Ch, Vergara G, Badger T, Ranjan R, Mahnkopf Ch, et al. Atrial fibrosis quantified using late gadolinium enhancement MRI is associated with sinus node dysfunction requiring pacemaker implant. J Cardiovasc Electrophysiol [Internet]. 2012 [cited 2023 Jul 2]; 23(1):44-50. Available from: https://pubmed.ncbi.nlm.nih.gov/21806700. doi:
10.1111/j.1540-8167.2011.02140.x
52. Schreiber D, Rieger A, Moser F, Kottkamp H. Catheter ablation of atrial fibrillation with box isolation of fibrotic areas: lessons on fibrosis distribution and extent, clinical characteristics, and their impact on long-term outcome. J Cardiovasc Electrophysiol. 2017; 28(9):971-83. doi: 10.1111/jce.13278
53. Chrispin J, Ipek EG, Habibi M, Yang E, Spragg D, Marine JE, et al. Clinical predictors of cardiac magnetic resonance late gadolinium enhancement in patients with atrial fibrillation. Europace [Internet]. 2017 [cited 2023 Jul 2] ;19(3):371-77. Available from: https://pubmed.ncbi.nlm.nih.gov/26965439. doi: 10.1093/europace/euw019
54. Khurram IM, Beinart R, Zipunnikov V, Dewire J, Yarmohammadi H, Sasaki T, et al. Magnetic resonance image intensity ratio, a normalized measure to enable interpatient comparability of left atrial fibrosis. Heart Rhythm [Internet]. 2014 [cited 2023 Jul 2];11(1):85-92. Available from: https://pubmed.ncbi.nlm.nih.gov/24096166. doi: 10.1016/j.hrthm.2013.10.007
55. Benito EM, Carlosena-Remirez A, Guasch E, Susana Prat-González S, Perea RJ, Figueras R, et al. Left atrial fibrosis quantification by late gadolinium-enhanced magnetic resonance: a new method to standardize the thresholds for reproducibility. Europace [Internet]. 2017 [cited 2023 Jul 2];19(8):1272-79. Available from: https://pubmed.ncbi.nlm.nih.gov/27940935. doi: 10.1093/europace/euw219
56. Beinart R, Nazarian S. Role of magnetic resonance imaging in atrial fibrillation ablation. Curr Treat Options Cardiovasc Med [Internet]. 2014 [cited 2023 Jul 2];16(6):316. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033869. doi: 10.1007/s11936-014-0316-3
57. Siebermair J, Kholmovski EG, Marrouche N. Assessment of left atrial fibrosis by late gadolinium enhancement magnetic resonance imaging: Methodology and clinical implications. JACC Clin Electrophysiol [Internet]. 2017 [cited 2023 Jul 2];3(8):791-802. Available from: https://pubmed.ncbi.nlm.nih.gov/29759774. doi: 10.1016/j.jacep.2017.07.004
58. Vijayakumar S, Kholmovski EG, Haslam MM, Burgon N, Marrouche NF. Dependence of image quality of late gadolinium enhancement MRI of left atrium on number of patients imaged: results of multi-center trial DECAAF. J Cardiovasc Magn Reson [Internet]. 2014 [cited 2023 Jul 2];16 (Suppl 1):146. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4044323. doi: 10.1186/1532-429X-16-S1-P146




59. Higuchi K, Cates J, Gardner G, Morris A, Burgon NS, Akoum N, Marrouche NF. The spatial distribution of late gadolinium enhancement of left atrial magnetic resonance imaging in patients with atrial fibrillation. JACC Clin Electrophysiol [Internet]. 2018 [cited 2023 Jul 2];4(1):49-58. Available from: https://pubmed.ncbi.nlm.nih.gov/29600786. doi: 10.1016/j.jacep.2017.07.016
60. Platonov PG, Mitrofanova LB, Orshanskaya V, Ho SY. Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age. J Am Coll Cardiol [Internet]. 2011 [cited 2023 Jul 2];58(21):2225-32. Available from: https://pubmed.ncbi.nlm.nih.gov/22078429/#:~:text=Conclusions%3A%20In%20post%2Dmortem%20material,of%20advanced%20fibrosis%20underlying%20AF. doi: 10.1016/j.jacc.2011.05.061
61. Tanaka K, Zlochiver S, Vikstrom KL, Yamazaki M, Moreno J, Klos M, et al. Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure. Circ Res [Internet]. 2007 [cited 2023 Set 9];101(8):839-47. Available from: https://pubmed.ncbi.nlm.nih.gov/17704207. doi: 10.1161/CIRCRESAHA.107.153858
62. Corradi D, Callegari S, Benussi S, Maestri R, Pastori P, Nascimbene S, et al. Myocyte changes and their left atrial distribution in patients with chronic atrial fibrillation related to mitral valve disease. Hum Pathol 2005;36(10):1080-9. doi: 10.1016/j.humpath.2005.07.018
63. Lachman N, Syed FF, Habib A, Kapa S, Bisco SE, Venkatachalam KL, Asirvatham SJ. Correlative anatomy for the electrophysiologist, Part I: the pericardial space, oblique sinus, transverse sinus. J Cardiovasc Electrophysiol. 2010;21(12):1421-6. doi: 10.1111/j.1540-8167.2010.01872.x
64. Hunter RJ, Liu Y, Lu Y, Wang W, Schilling RJ. Left atrial wall stress distribution and its relationship to electrophysiologic remodeling in persistent atrial fibrillation. Circ Arrhythm Electrophysiol [Internet] 2012 [cited 2023 Set 9];5(2):351-60. Available from: https://pubmed.ncbi.nlm.nih.gov/22294615. doi: 10.1161/CIRCEP.111.965541
65. Nakahara S, Yamaguchi T, Hori Y, Anjo N, Hayashi A, Kobayashi S et al. Spatial relation between left atrial anatomical contact areas and circular activation in persistent atrial fibrillation. J Cardiovasc Electrophysiol 2016;27(5): 515-23. doi: 10.1111/jce.12907
66. Verma A, Jiang ChY, Betts TR, Chen J, Deisenhofer I, Mantovan R, et al. Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med [Internet]. 2015 [cited 2023 Set 9];372(19):1812-22. Available from: https://pubmed.ncbi.nlm.nih.gov/25946280. doi: 10.1056/NEJMoa1408288
67. Yamaguchi T, Tsuchiya T, Nakahara S, Fukui A, Nagamoto Y, Murotani K, et al. Efficacy of left atrial voltage-based catheter ablation of persistent atrial fibrillation. J Cardiovasc Electrophysiol 2016;27(9):1055-63. doi: 10.1111/jce.13019
68. Yang G, Zhuang X, Khan H, Haldar S, Nyktari E, Li L, et al. Fully automatic segmentation and objective assessment of atrial scars for long-standing persistent atrial fibrillation patients using late gadolinium-enhanced MRI. Med Phys [Internet]. 2018 [cited 2023 Set 9];45(4):1562-76. Available from: https://pubmed.ncbi.nlm.nih.gov/29480931. doi: 10.1002/mp.12832
69. Cochet H, Dubois R, Yamashita S, Al Jefairi N, Berte B, Sellal JM, et al. Relationship between fibrosis detected on late gadolinium-enhanced cardiac magnetic resonance and re-entrant activity assessed with electrocardiographic imaging in human persistent atrial fibrillation. JACC Clin Electrophysiol. [Internet]. 2018 [cited 2023 Set 9];4(1):17-29. Available from: https://pubmed.ncbi.nlm.nih.gov/29479568. doi: 10.1016/j.jacep.2017.07.019
70. Oakes RS, Badger TJ, Kholmovski EG, Akoum N, Burgon NS, Fish EN, et al. Detection and quantification of left atrial structural remodeling using delayed enhancement MRI in patients with atrial fibrillation. Circulation [Internet]. 2009 [cited 2023 Ago 20];119(13):1758-67. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2725019. doi: 10.1161/CIRCULATIONAHA.108.811877
71. Squara F, Scarlatti D, Bun SS, Moceri P, Ferrari E, Meste O, Zarzoso V. High-density mapping of the average complex interval helps localizing atrial fibrillation drivers and predicts catheter ablation outcomes. Front Cardiovasc Med. 2023 Aug 17;10:1145894. doi: 10.3389/fcvm.2023.1145894. Available from: https://pubmed.ncbi.nlm.nih.gov/37663412/
72. Chrispin J, Gucuk Ipek E, Zahid S, Prakosa A, Habibi M, Spragg D, et al. Lack of regional association between atrial late gadolinium enhancement on cardiac magnetic resonance and atrial fibrillation rotors. Heart Rhythm. 2016;13(3):654-60. doi: 10.1016/j.hrthm.2015.11.011
73. Marrouche NF, Wazni O, McGann Ch, Greene T, Dean JM, Dagher L, et al. Effect of MRI-Guided fibrosis ablation vs conventional catheter ablation on atrial arrhythmia recurrence in patients with persistent atrial fibrillation: The DECAAF II randomized clinical trial. JAMA [Internet]. 2022 [cited 2023 Ago 20]; 327(23): 2296–2305. Available from: https://pubmed.ncbi.nlm.nih.gov/35727277. doi: 10.1001/jama.2022.8831
Publicado
2024-09-02
Sección
ARTÍCULOS DE REVISIÓN