El desarrollo y los complejos mecanismos de resistencia de S. aureus: una amenaza persistente en la era de los antibióticos

.

Palabras clave: Staphylococcus aureus, antibacterianos, farmacorresistencia bacteriana, terapéutica, Staphylococcus aureus resistente a meticilina, Staphylococcus aureus resistente a vancomicina

Resumen

Introducción: S. aureus ha emergido como una amenaza persistente, demostrando una notable habilidad para desarrollar resistencia a lo largo de la evolución de los antibióticos. Desde los primeros enfrentamientos con la penicilina hasta los desafíos actuales con cepas resistentes a la vancomicina y la daptomicina, el estudio de los mecanismos de resistencia de este patógeno ha adquirido una importancia crítica.

Objetivos: documentar los cambios en los patrones de resistencia de S. aureus a lo largo del tiempo, además de identificar las etapas críticas en el desarrollo de la resistencia a diferentes antibióticos.

Materiales y métodos: el proceso de selección de artículos revisados se llevó a cabo identificando artículos publicados entre 2010 y 2023. Se utilizaron varias bases de datos relevantes, incluyendo PubMed, Scopus, Embase, Cochrane Library y Scielo. Se incluyeron estudios observacionales, artículos de revisión y guías clínicas. Se desarrollaron estrategias de búsqueda específicas para cada base de datos utilizando palabras clave y términos de búsqueda relacionados con S. aureus y su resistencia antimicrobiana, así como los tipos de estudios de interés. Se extrajeron datos relevantes de los estudios seleccionados, incluyendo información sobre los patrones de resistencia, mecanismos de resistencia, impacto clínico y estrategias terapéuticas. Los datos recopilados se analizaron y sintetizaron para documentar los cambios en los patrones de resistencia de S. aureus a lo largo del tiempo y para identificar las etapas críticas en el desarrollo de la resistencia a diferentes antibióticos.

 

Resultados: se incluyeron 100 artículos donde se evidencia una evolución temporal de la resistencia, desde las primeras cepas resistentes a la penicilina hasta las actuales cepas resistentes a la vancomicina y la daptomicina. Estos estudios proporcionaron un análisis detallado de los mecanismos moleculares clave que impulsan la resistencia antimicrobiana, tales como la producción de beta-lactamasas, las alteraciones en las proteínas de unión a penicilina y las modificaciones en la membrana celular. Los hallazgos destacan una evolución significativa en la capacidad de S. aureus para adaptarse a diferentes antibióticos a lo largo del tiempo, subrayando la complejidad y la diversidad de los mecanismos de resistencia desarrollados por esta bacteria.

Conclusiones: la evolución de la resistencia de S. aureus ha seguido un patrón marcado por etapas críticas, desde la aparición de cepas productoras de penicilinasa tras la introducción de la penicilina, hasta el surgimiento de MRSA con la meticilina y de VISA y VRSA con la vancomicina. Estos cambios destacan la capacidad de adaptación de S. aureus a nuevas presiones antibióticas. La revisión subraya la necesidad urgente de desarrollar estrategias antimicrobianas innovadoras y sostenibles para controlar esta creciente amenaza. Comprender los mecanismos de resistencia es crucial para desarrollar enfoques más efectivos y personalizados en el tratamiento de las infecciones por este germen.

 

Citas

1. Coombs GW, Yee NWT, Daley D, Bennett CM, Robinson JO, Stegger M, et al. Molecular epidemiology of penicillin-susceptible Staphylococcus aureus bacteremia in Australia and reliability of diagnostic phenotypic susceptibility methods to detect penicillin susceptibility. Microorganisms [Internet]. 2022 [cited 2023 Feb 10];10(8):1650. Available from: https://pubmed.ncbi.nlm.nih.gov/36014068. doi: 10.3390/microorganisms10081650
2. Yoda T, Matsuhashi A, Matsushita A, Shibagaki S, Sasakura Y, Aoki K, Hosokawa M, Tsuda S. Uncovering Endolysins against Methicillin-Resistant Staphylococcus aureus Using a Microbial Single-Cell Genome Database. ACS Infect Dis. 2024 Jun 21. doi: 10.1021/acsinfecdis.4c00039. Available from: https://pubs.acs.org/doi/10.1021/acsinfecdis.4c00039
3. Panda RK, Mahapatra A, Mallick B, Nirupama Chayani N. Evaluation of genotypic and phenotypic methods for detection of methicillin resistant Staphylococcus aureus in a tertiary care hospital of eastern Odisha. J Clin Diagn Res [Internet]. 2016 [cited 2023 Nov 6]; 10(2):19-21. Available from: http://jcdr.net/article_fulltext.asp?issn=0973-709x&year=2016&volume=10&issue=2&page=DC19&issn=0973-709x&id=7278. doi: 10.7860/JCDR/2016/17476.7278
4. Jenkins A, Diep BA, Mai TT, Vo NH, Warrener P, Suzich J, et al. Differential expression and roles of Staphylococcus aureus virulence determinants during colonization and disease. mBio [Internet]. 2015 [cited 2023 Nov 11]; 6(1): e02272'14. Available from: https://pubmed.ncbi.nlm.nih.gov/25691592. doi: 10.1128/mBio.02272-14
5. Wang WY, Chiu CF, Lee YT, Hsueh PR, Tsao SM. Molecular epidemiology and phenotypes of invasive methicillin-resistant vancomycin-intermediate Staphylococcus aureus in Taiwan. J Microbiol Immunol Infect. 2022 Dec;55(6 Pt 2):1203-1210. doi: 10.1016/j.jmii.2021.09.003. Available from: https://www.sciencedirect.com/science/article/pii/S1684118221001900?via%3Dihub
6. Rock K. Brief history of Staphylococcus aureus and diagnosis, treatment. [Editorial]. Arch Clin Microbiol [Internet]. 2022 [cited 2023 Nov 12]; 13(11):212. Available from: https://www.itmedicalteam.pl/articles/brief-history-of-staphylococcus-aureus-and-diagnosis-treatment.pdf
7. Wang SK, Gilchrist A, Loukitcheva A, Plotkin BJ, Sigar IM, Gross AE, et al. Prevalence of a cefazolin inoculum effect associated with blaZ gene types among methicillin-susceptible Staphylococcus aureus isolates from four major medical centers in Chicago. Antimicrob Agents Chemother [Internet]. 2018 [cited 2023 Nov 12];62(8):e00382-18. Available from: https://pubmed.ncbi.nlm.nih.gov/29891607. doi: 10.1128/AAC.00382-18
8. Davido B, Laurence Ch, Dinh A, Bouchand F. Back to the future with the use of penicillin in Penicillin-Susceptible Staphylococcus aureus (PSSA) bacteremia. [Letter]. Am J Med [Internet]. 2018 [cited 2023 Nov 5]; 131(4): E155. Available from: https://www.amjmed.com/article/S0002-9343(17)31114-2/fulltext. doi: 10.1016/j.amjmed.2017.10.032
9. Zaoutis TE, Toltzis P, Chu J, Abrams T, Dul M, Kim J, et al. Clinical and molecular epidemiology of community-acquired methicillin-resistant Staphylococcus aureus infections among children with risk factors for health care-associated infection: 2001-2003. Pediatr Infect Dis J. 2006; 25(4):343-8. doi: 10.1097/01.inf.0000207403.67197.cc
10. Moriyama Y, Ishikane M, Mezaki K, Ohmagari N. Comparison of penicillins (penicillin G and ampicillin) and cefazolin as a definitive therapy against Penicillin-Susceptible Staphylococcus aureus (PSSA) bacteremia in Japan: a retrospective cohort study. J Infect Chemother. 2020; 26(4):358-62. doi:10.1016/j.jiac.2019.10.023
11. Bush K, Bradford PA. Epidemiology of β-Lactamase-producing pathogens. Clin Microbiol Rev [Internet]. 2020 [cited 2023 Nov 12];33(2): e00047-19. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048014. doi: 10.1128/CMR.00047-19
12. Hines KM, Waalkes A, Penewit K, Holmes EA, Salipante SJ, Werth BJ, Xu L. Characterization of the mechanisms of daptomycin resistance among gram-positive bacterial pathogens by multidimensional lipidomics. mSphere [Internet]. 2017 [cited 2023 Nov 13];2(6):e00492-17. Available from: https://pubmed.ncbi.nlm.nih.gov/29242835 doi: 10.1128/mSphere.00492-17
13. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis [Internet]. 2011 [cited 2023 Nov 18];52(3): e18-e55. Available from: https://academic.oup.com/cid/article/52/3/e18/306145. doi: https://doi.org/10.1093/cid/ciq146
14. Deurenberg RH, Stobberingh EE. The evolution of Staphylococcus aureus. Infect Genet Evol. 2008; 8(6):747-63. doi:10.1016/j.meegid.2008.07.007
15. Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol [Internet]. 2009 [cited 2023 Nov 9];7(9):629-41. Available from: https://pubmed.ncbi.nlm.nih.gov/19680247. doi: 10.1038/nrmicro2200
16. Barber KE, Smith JR, Ireland CE, Boles BR, Rose WE, Rybak MJ. Evaluation of ceftaroline alone and in combination against biofilm-producing methicillin-resistant Staphylococcus aureus with reduced susceptibility to daptomycin and vancomycin in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother [Internet]. 2015 [cited 2023 Nov 16];59(8):4497-503. Available from: https://pubmed.ncbi.nlm.nih.gov/25987623. doi: 10.1128/AAC.00386-15
17. Jenul Ch, Horschwill A. Regulation of Staphylococcus aureus virulence. Microbiol Spectr [Internet]. 2018 [cited 2023 Nov 11]; 6(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452892. doi: 10.1128/microbiolspec.GPP3-0031-2018
18. Párraga Solórzano PK, Yao J, Rock ChO, Kehl-Fie TE. Disruption of glycolysis by nutritional immunity activates a two-component system that coordinates a metabolic and antihost response by Staphylococcus aureus. mBio [Internet]. 2019 [cited 2023 Nov 11];10(4):e01321-19. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686040. doi: 10.1128/mBio.01321-19
19. Radin JN, Kelliher JL, Párraga Solórzano PK, Kehl-Fie TE. The two-component system ArlRS and alterations in metabolism enable Staphylococcus aureus to resist calprotectin-induced manganese starvation. PLoS Pathog [Internet]. 2016 [cited 2023 Nov 14];12(11):e1006040. Available from: https://pubmed.ncbi.nlm.nih.gov/27902777. doi: 10.1371/journal.ppat.1006040
20. Peng M, Xu Y, Dou B, Yang F, He Q, Liu Z, et al. The adcA and lmb genes play an important role in drug resistance and full virulence of Streptococcus suis. Microbiol Spectr [Internet]. 2023 [cited 2023 Nov 20];11(3): e0433722. Available from: https://pubmed.ncbi.nlm.nih.gov/37212676. doi: 10.1128/spectrum.04337-22

21. Párraga Solórzano PK, Shupe AC, Kehl-Fie TE. The sensor histidine kinase ArlS is necessary for Staphylococcus aureus to activate ArlR in response to nutrient availability. J Bacteriol [Internet]. 2021 [cited 2023 Nov 13];203(24): e0042221. Available from: https://pubmed.ncbi.nlm.nih.gov/34606376. doi: 10.1128/JB.00422-21
22. Kwiecinski JM, Horswill AR. Staphylococcus aureus bloodstream infections: pathogenesis and regulatory mechanisms. Curr Opin Microbiol [Internet]. 2020 [cited 2023 Nov 15]; 53:51-60. Available from: https://pubmed.ncbi.nlm.nih.gov/32172183. doi: 10.1016/j.mib.2020.02.005
23. Matono T, Nagashima M, Mezaki K, Motohashi A, Kutsuna S, Hayakawa K, et al. Molecular epidemiology of β-lactamase production in penicillin-susceptible Staphylococcus aureus under high-susceptibility conditions. J Infect Chemother [Internet]. 2018 [cited 2023 Nov 1];24(2):153-5. Available from: https://pubmed.ncbi.nlm.nih.gov/29132926. doi: 10.1016/j.jiac.2017.10.014
24. Saravolatz LD, Stein GE, Johnson LB. Ceftaroline: a novel cephalosporin with activity against methicillin-resistant Staphylococcus aureus. Clin Infect Dis [Internet]. 2011 [cited 2023 Nov 3]; 52(9):1156-63. Available from: https://pubmed.ncbi.nlm.nih.gov/21467022. doi: 10.1093/cid/cir147
25. Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev [Internet]. 2020 [cited 2023 Oct 19];44(1):123-53. Available from: https://pubmed.ncbi.nlm.nih.gov/31841134. doi: 10.1093/femsre/fuz030
26. Henderson A, Harris P, Hartel G, Paterson D, Turnidge J, Davis JS, Tong SYC. Benzylpenicillin versus flucloxacillin for penicillin-susceptible Staphylococcus aureus bloodstream infections from a large retrospective cohort study. Int J Antimicrob Agents. 2019; 54(4):491-5. doi: 10.1016/j.ijantimicag.2019.05.020
27. Reynolds G, Crawford S, Cuenca J, Ghosh N, Newton P. Penicillin versus anti-staphylococcal beta-lactams for penicillin-susceptible Staphylococcus aureus blood stream infections: a retrospective cohort study. Eur J Clin Microbiol Infect Dis. 2022;41(1):147-51. doi: 10.1007/s10096-021-04330-2
28. David MZ, Daum RS. Treatment of Staphylococcus aureus Infections. Curr Top Microbiol Immunol. 2017;409:325-83. doi:10.1007/82_2017_42
29. Hagstrand Aldman M, Kavyani R, Kahn F, Påhlman LI. Treatment outcome with penicillin G or cloxacillin in penicillin-susceptible Staphylococcus aureus bacteraemia: a retrospective cohort study. Int J Antimicrob Agents [Internet]. 2022 [cited 2023 Nov 3];59(4):106567. Available from: https://pubmed.ncbi.nlm.nih.gov/35288257. doi: 10.1016/j.ijantimicag.2022.106567
30. Becker REN, Bubeck Wardenburg J. Staphylococcus aureus and the skin: a longstanding and complex interaction. Skinmed. 2015;13(2):111-9. doi: 10.1012/jqw.21234.1.003
31. Nowicka D, Grywalska E. Staphylococcus aureus and host immunity in recurrent furunculosis. Dermatology [Internet]. 2019 [cited 2023 Nov 20];235(4):295-305. Available from: https://pubmed.ncbi.nlm.nih.gov/30995649. doi: 10.1159/000499184
32. El Feghaly RE, Stamm JE, Fritz SA, Burnham CAD. Presence of the bla(Z) beta-lactamase gene in isolates of Staphylococcus aureus that appear penicillin susceptible by conventional phenotypic methods. Diagn Microbiol Infect Dis. 2012;74(4):388-93. doi: 10.1016/j.diagmicrobio.2012.07.013
33. Namoune R, Djebbar A, Mekler R, McHugh M, Bekara MEA, Decano A, et al. Whole genome sequencing and molecular epidemiology of clinical isolates of Staphylococcus aureus from Algeria. Microorganisms [Internet]. 2023 [cited 2023 Nov 13];11(8):2047. Available from: https://pubmed.ncbi.nlm.nih.gov/37630607. doi: 10.3390/microorganisms11082047
34. Sahin-Tóth J, Kovács E, Tóthpál A, Juhász J, Forró B, Bányai K, et al. Whole genome sequencing of coagulase positive staphylococci from a dog-and-owner screening survey. PloS One [Internet]. 2021 [cited 2023 Oct 25];16(1):e0245351. Available from: https://pubmed.ncbi.nlm.nih.gov/33428679. doi: 10.1371/journal.pone.0245351
35. Takayama Y, Tanaka T, Oikawa K, Fukano N, Goto M, Takahashi T. Prevalence of blaZ gene and performance of phenotypic tests to detect penicillinase in Staphylococcus aureus isolates from Japan. Ann Lab Med [Internet]. marzo de 2018 [cited 2023 Nov 1];38(2):155-9. Available from: https://pubmed.ncbi.nlm.nih.gov/29214760. doi: 10.3343/alm.2018.38.2.155
36. Andrzejczuk S, Cygan M, Dłuski D, Stępień-Pyśniak D, Kosikowska U. Staphylococcal resistance patterns, blaZ and SCCmec cassette genes in the nasopharyngeal microbiota of pregnant women. Int J Mol Sci [Internet]. 2023 [cited 2023 Nov 4];24(9):7980. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178740. doi: 10.3390/ijms24097980
37. Mok HT, Teng ChB, Bergin S, Hon PY, Lye DC, De PP, Vasoo S. Treatment outcomes with benzylpenicillin and non-benzylpenicillin antibiotics, and the performance of the penicillin zone-edge test versus molecular detection of blaZ in penicillin-susceptible Staphylococcus aureus (PSSA) bacteraemia. J Antimicrob Chemother. 2023;78(10):2515-23. doi:10.1093/jac/dkad263
38. Nomura R, Nakaminami H, Takasao K, Muramatsu S, Kato Y, Wajima T, Noguchi N. A class A β-lactamase produced by borderline oxacillin-resistant Staphylococcus aureus hydrolyses oxacillin. J Glob Antimicrob Resist [Internet]. 2020 [cited 2023 Oct 7]; 22:244-7. Available from: https://pubmed.ncbi.nlm.nih.gov/32200127. doi: 10.1016/j.jgar.2020.03.002
39. Massidda O, Montanari MP, Mingoia M, Varaldo PE. Cloning and expression of the penicillinase from a borderline methicillin-susceptible Staphylococcus aureus strain in Escherichia coli. FEMS Microbiol Lett [Internet]. 1994 [cited 2023 Nov 13];119(3):263-9. Available from: https://pubmed.ncbi.nlm.nih.gov/8050709. doi: 10.1111/j.1574-6968.1994.tb06899.x
40. Li J, Echevarria KL, Hughes DW, Cadena JA, Bowling JE, Lewis JS. Comparison of cefazolin versus oxacillin for treatment of complicated bacteremia caused by methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother [Internet]. 2014 [cited 2023 Oct 13];58(9):5117-24. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4135867. doi: 10.1128/AAC.02800-14
41. Moriyama Y, Ishikane M, Mezaki K, Ohmagari N. Comparison of penicillins (penicillin G and ampicillin) and cefazolin as a definitive therapy against penicillin-susceptible Staphylococcus aureus (PSSA) bacteremia in Japan: a retrospective cohort study. J Infect Chemother. 2020;26(4):358-62. doi:10.1016/j.jiac.2019.10.023
42. Bidell MR, Patel N, O’Donnell JN. Optimal treatment of MSSA bacteraemias: a meta-analysis of cefazolin versus antistaphylococcal penicillins. J Antimicrob Chemother [Internet]. 2018 [cited 2023 Oct 17];73(10):2643-51. Available from: https://pubmed.ncbi.nlm.nih.gov/30085140. doi: 10.1093/jac/dky259
43. Mossman AK, Svishchuk J, Waddell BJM, Izydorczyk CS, Buckley PT, Hilliard JJ, et al. Staphylococcus aureus in non-cystic fibrosis bronchiectasis: Prevalence and genomic basis of high inoculum β-Lactam resistance. Ann Am Thorac Soc [Internet]. 2022 [cited 2023 Oct 17];19(8):1285-93. Available from: https://pubmed.ncbi.nlm.nih.gov/35213810. doi: 10.1513/AnnalsATS.202108-965OC
44. Lenhard JR, Bulman ZP. Inoculum effect of β-lactam antibiotics. J Antimicrob Chemother [Internet]. 2019 [cited 2023 Nov 17];74(10):2825-43. Available from: https://pubmed.ncbi.nlm.nih.gov/31170287/ doi: 10.1093/jac/dkz226
45. Foster TJ. Surface proteins of Staphylococcus aureus. Microbiol Spectr [Internet]. 2019 [cited 2023 Oct 18];7(4). Available from: https://pubmed.ncbi.nlm.nih.gov/31267926. doi: 10.1128/microbiolspec.GPP3-0046-2018
46. McNeil JCh, Sommer LM, Boyle M, Hogan P, Vallejo JG, Hultén KG, et al. Cefazolin inoculum effect and methicillin-susceptible Staphylococcus aureus osteoarticular infections in children. Antimicrob Agents Chemother [Internet]. 2020 [cited 2023 Nov 11];64(9):e00703-20. Available from: https://pubmed.ncbi.nlm.nih.gov/32660989. doi: 10.1128/AAC.00703-20
47. Dingle TC, Gamage D, Gomez-Villegas S, Hanson BM, Reyes J, Abbott A, et al. Prevalence and characterization of the cefazolin inoculum effect in North American methicillin-susceptible Staphylococcus aureus isolates. J Clin Microbiol [Internet]. 2022 [cited 2023 Oct 20];60(7):e0249521. Available from: https://pubmed.ncbi.nlm.nih.gov/35578988. doi: 10.1128/jcm.02495-21
48. Rincon S, Carvajal LP, Gómez-Villegas SI, Echeverri AM, Rios R, Dinh A, et al. A test for the rapid detection of the cefazolin inoculum effect in methicillin-susceptible Staphylococcus aureus. J Clin Microbiol [Internet]. 2021 [cited 2023 Oct 23];59(4):e01938-20. Available from: https://pubmed.ncbi.nlm.nih.gov/33536292. doi: 10.1128/JCM.01938-20
49. Saeki M, Shinagawa M, Yakuwa Y, Nirasawa S, Sato Y, Yanagihara N, Takahashi S. Inoculum effect of high concentrations of methicillin-susceptible Staphylococcus aureus on the efficacy of cefazolin and other beta-lactams. J Infect Chemother. 2018;24(3):212-5. doi:10.1016/j.jiac.2017.10.021
50. Bhuiyan MS, Jiang JH, Kostoulias X, Theegala R, Lieschke GJ, Peleg AY. The resistance to host antimicrobial peptides in infections caused by daptomycin-resistant Staphylococcus aureus. Antibiotics (Base) [Internet]. 2021 [cited 2023 Nov 14];10(2):96. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7908987. doi: 10.3390/antibiotics10020096
51. Mahjabeen F, Saha U, Mostafa MN, Siddique F, Ahsan E, Fathma S, et al. An update on treatment options for Methicillin-Resistant Staphylococcus aureus (MRSA) bacteremia: A systematic review. Cureus [Internet]. 2022 [cited 2023 Nov 6]; 14(11): e31486. Available from: https://www.cureus.com/articles/119322-an-update-on-treatment-options-for-methicillin-resistant-staphylococcus-aureus-mrsa-bacteremia-a-systematic-review#!. doi: 10.7759/cureus.31486
52. Brown NM, Goodman AL, Horner C, Jenkins A, Brown EM. Treatment of methicillin-resistant Staphylococcus aureus (MRSA): updated guidelines from the UK. JAC Antimicrob Resist [Internet]. 2021 [cited 2023 Nov 13];3(1):dlaa114. Available from: https://pubmed.ncbi.nlm.nih.gov/34223066. doi: 10.1093/jacamr/dlaa114
53. Lakhundi S, Zhang K. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev [Internet]. 2018 [cited 2023 Nov 15];31(4):e00020-18. Available from: https://pubmed.ncbi.nlm.nih.gov/30209034. doi: 10.1128/CMR.00020-18
54. Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, Harbarth S. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers [Internet]. 2018 [cited 2023 Nov 13];4:18033. Available from: https://www.nature.com/articles/nrdp201833 doi: 10.1038/nrdp.2018.33
55. Hombach M, Weissert Ch, Senn MM, Zbinden R. Comparison of phenotypic methods for the detection of penicillinase in Staphylococcus aureus and proposal of a practical diagnostic approach. J Antimicrob Chemother [Internet]. 2017 [cited 2023 Nov 1];72(4):1089-93. Available from: https://pubmed.ncbi.nlm.nih.gov/28069883. doi: 10.1093/jac/dkw521
56. Otto M. Community-associated MRSA: what makes them special? Int J Med Microbiol [Internet]. 2013 [cited 2023 Nov 13];303(6-7):324-30. Available from: https://pubmed.ncbi.nlm.nih.gov/23517691. doi: 10.1016/j.ijmm.2013.02.007
57. Navratna V, Nadig S, Sood V, Prasad K, Arakere G, Gopal B. Molecular basis for the role of Staphylococcus aureus penicillin binding protein 4 in antimicrobial resistance. J Bacteriol [Internet]. 2010 [cited 2023 Oct 11];192(1):134-44. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798245. doi: 10.1128/JB.00822-09
58. Palavecino EL. Rapid methods for detection of MRSA in clinical specimens. Methods Mol Biol. 2020;2069:29-45. doi:10.1007/978-1-4939-9849-4_2
59. Li X, Huang T, Xu K, Li Ch, Li Y. Molecular characteristics and virulence gene profiles of Staphylococcus aureus isolates in Hainan, China. BMC Infect Dis [Internet]. 2019 [cited 2023 Oct 28];19(1):873. Available from: https://pubmed.ncbi.nlm.nih.gov/31640587. doi: 10.1186/s12879-019-4547-5
60. Kale P, Dhawan B. The changing face of community-acquired methicillin-resistant Staphylococcus aureus. Indian J Med Microbiol [Internet]. 2016 [cited 2023 Oct 13];34(3):275-85. Available from: https://pubmed.ncbi.nlm.nih.gov/27514947. doi: 10.4103/0255-0857.188313
61. Ge B, Mukherjee S, Hsu ChH, Davis JA, Tran TTT, Yang Q, et al. MRSA and multidrug-resistant Staphylococcus aureus in U.S. retail meats, 2010-2011. Food Microbiol. 2017; 62:289-97.:. doi: 10.1016/j.fm.2016.10.029
62. Wu S, Lin K, Liu Y, Zhang H, Lei L. Two-component signaling pathways modulate drug resistance of Staphylococcus aureus (Review). Biomed Rep [Internet]. 2020 [cited 2023 Nov 17];13(2):5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7323452. doi: 10.3892/br.2020.1312
63. Bleul L, Francois P, Wolz Ch. Two-component systems of S. aureus: signaling and sensing mechanisms. Genes [Internet]. 23 de diciembre de 2021 [cited 2023 Nov 13];13(1):34. Available from: https://pubmed.ncbi.nlm.nih.gov/35052374. doi: 10.3390/genes13010034
64. de Oliveira Cerqueira E Costa M, Barbosa do Nascimento AP, Cortes Martins Y, Trindade Dos Santos M, de Sá Figueiredo AM, Perez-Rueda E, Nicolás MF. The gene regulatory network of Staphylococcus aureus ST239-SCC mec III strain Bmb9393 and assessment of genes associated with the biofilm in diverse backgrounds. Front Microbiol [Internet]. 10 de enero de 2023 [cited 2023 Nov 7];13:1049819. Available from: https://pubmed.ncbi.nlm.nih.gov/36704545. doi: 10.3389/fmicb.2022.1049819
65. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis [Internet]. 2011 [cited 2023 Nov 6]; 52(3): e18-55. Available from: https://academic.oup.com/cid/article/52/3/e18/306145. doi: https://doi.org/10.1093/cid/ciq146
66. Fang H, Hedin G. Use of cefoxitin-based selective broth for improved detection of methicillin-resistant Staphylococcus aureus. J Clin Microbiol [Internet]. 2006 [cited 2023 Nov 18];44(2):592-4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392703. doi: 10.1128/JCM.44.2.592-594.2006
67. Fernandes CJ, Fernandes LA, Collignon P. Cefoxitin resistance as a surrogate marker for the detection of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother [Internet]. 2005 [cited 2023 Nov 13];55(4):506-10. Available from: https://pubmed.ncbi.nlm.nih.gov/15743899. doi: 10.1093/jac/dki052
68. Howden BP. Recognition and management of infections caused by vancomycin-intermediate Staphylococcus aureus (VISA) and heterogenous VISA (hVISA). Intern Med J. 2005;35(Suppl 2):S136-40. doi:10.1111/j.1444-0903.2005.00986.x
69. Miller NC, Rudoy RC. Vancomycin intermediate-resistant Staphylococcus aureus (VISA). Orthop Nurs. 2000;19(6):45-8. doi:10.1097/00006416-200019060-00009
70. Roch M, Clair P, Renzoni A, Reverdy ME, Dauwalder O, Bes M, et al. Exposure of Staphylococcus aureus to subinhibitory concentrations of β-lactam antibiotics induces heterogeneous vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother [Internet]. 2014 [cited 2023 Nov 13];58(9):5306-14. Available from: https://pubmed.ncbi.nlm.nih.gov/24957836. doi: 10.1128/AAC.02574-14
71. McEvoy ChRE, Tsuji B, Gao W, Seemann T, Porter JL, Doig K, et al. Decreased vancomycin susceptibility in Staphylococcus aureus caused by IS256 tempering of WalKR expression. Antimicrob Agents Chemother [Internet]. 2013 [cited 2023 Nov 13];57(7):3240-9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697332. doi: 10.1128/AAC.00279-13
72. Zhu X, Liu C, Gao S, Lu Y, Chen Z, Sun Z. Vancomycin intermediate-resistant Staphylococcus aureus (VISA) isolated from a patient who never received vancomycin treatment. Int J Infect Dis [Internet]. 2015 [cited 2023 Nov 17]; 33:185-90. Available from: https://pubmed.ncbi.nlm.nih.gov/25543098. doi: 10.1016/j.ijid.2014.12.038
73. Kuroda M, Sekizuka T, Matsui H, Ohsuga J, Ohshima T, Hanaki H. IS256-mediated overexpression of the WalKR two-component system regulon contributes to reduced vancomycin susceptibility in a Staphylococcus aureus clinical isolate. Front Microbiol [Internet]. 2019 [cited 2023 Nov 19]; 10:1882. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702299. doi: 10.3389/fmicb.2019.01882
74. Hiramatsu K, Kayayama Y, Matsuo M, Aiba Y, Saito M, Hishinuma T, Iwamoto A. Vancomycin-intermediate resistance in Staphylococcus aureus. J Glob Antimicrob Resist [Internet]. 2014 [cited 2023 Nov 17];2(4):213-24. Available from: https://pubmed.ncbi.nlm.nih.gov/27873679. doi: 10.1016/j.jgar.2014.04.006
75. Shoji M, Cui L, Iizuka R, Komoto A, Neoh HM, Watanabe Y, et al. WalK and clpP mutations confer reduced vancomycin susceptibility in Staphylococcus aureus. Antimicrob Agents Chemother [Internet]. 2011 [cited 2023 Nov 25];55(8):3870-81. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3147622. doi: 10.1128/AAC.01563-10
76. Loffredo MR, Savini F, Bobone S, Casciaro B, Franzyk H, Mangoni ML, Stella L. Inoculum effect of antimicrobial peptides. Proc Natl Acad Sci USA [Internet]. 2021 [cited 2023 Nov 13];118(21):e2014364118. Available from: https://pubmed.ncbi.nlm.nih.gov/34021080. doi: 10.1073/pnas.2014364118



77. Dietrich A, Steffens U, Gajdiss M, Boschert AL, Dröge JK, Szekat Ch, et al. Cervimycin-resistant Staphylococcus aureus strains display vancomycin-intermediate resistant phenotypes. Microbiol Spectr [Internet]. 2022 [cited 2023 Nov 3];10(5):e02567-22. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603734. doi: 10.1128/spectrum.02567-22
78. Rao Y, Peng H, Shang W, Hu Z, Yang Y, Tan L, et al. A vancomycin resistance-associated WalK(S221P) mutation attenuates the virulence of vancomycin-intermediate Staphylococcus aureus. J Adv Res [Internet]. 2022 [cited 2023 Nov 1];40:167-78. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481939. doi: 10.1016/j.jare.2021.11.015
79. Peng H, Rao Y, Yuan W, Zheng Y, Shang W, Hu Z, et al. Reconstruction of the Vancomycin-susceptible Staphylococcus aureus phenotype from a vancomycin-intermediate S. aureus XN108. Front Microbiol [Internet]. 2018 [cited 2023 Nov 1];9:2955. Available from: https://pubmed.ncbi.nlm.nih.gov/30546356. doi: 10.3389/fmicb.2018.02955
80. Fait A, Seif Y, Mikkelsen K, Poudel S, Wells JM, Palsson BO, Ingmer He. Adaptive laboratory evolution and independent component analysis disentangle complex vancomycin adaptation trajectories. Proc Natl Acad Sci USA [Internet]. 2022 [cited 2023 Nov 1];119(30):e2118262119. Available from: https://pubmed.ncbi.nlm.nih.gov/35858453. doi: 10.1073/pnas.2118262119
81. Bakthavatchalam YD, Babu P, Munusamy E, Dwarakanathan HT, Rupali P, Zervos M, et al. Genomic insights on heterogeneous resistance to vancomycin and teicoplanin in Methicillin-resistant Staphylococcus aureus: A first report from South India. PLoS ONE [Internet]. 2019 [cited 2023 Nov 17];14(12): e0227009. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227009. doi: https://doi.org/10.1371/journal.pone.0227009
82. Rossato AM, Primon-Barros M, Gomes Dias CA, Alves d’Azevedo P. Vancomycin MIC and agr dysfunction in invasive MRSA infections in southern Brazil. Braz J Microbiol [Internet]. 2020 [cited 2023 Oct 20];51(4):1819-23. Available from: https://pubmed.ncbi.nlm.nih.gov/33074551. doi: 10.1007/s42770-020-00384-0
83. Dai Y, Chang W, Zhao Ch, Peng J, Xu L, Lu H, et al. VraR binding to the promoter region of agr inhibits its function in vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous VISA. Antimicrob Agents Chemother [Internet]. 2017 [cited 2023 Oct 15];61(5):e02740-16. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404600. doi: 10.1128/AAC.02740-16
84. Burian M, Plange J, Schmitt L, Kaschke A, Marquardt Y, Huth L, et al. Adaptation of Staphylococcus aureus to the human skin environment identified using an ex vivo tissue model. Front Microbiol [Internet]. 2021 [cited 2023 Oct 13];12:728989. Available from: https://pubmed.ncbi.nlm.nih.gov/34621255. doi: 10.3389/fmicb.2021.728989
85. Gardner SG, Marshall DD, Daum RS, Powers R, Somerville GA. Metabolic mitigation of Staphylococcus aureus vancomycin intermediate-level susceptibility. Antimicrob Agents Chemother [Internet]. 2018 [cited 2023 Oct 13];62(1):e01608-17. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740343. doi: 10.1128/AAC.01608-17
86. Cong Y, Yang S, Rao X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J Adv Res [Internet]. 2019 [cited 2023 Oct 13];21:169-76. Available from: https://pubmed.ncbi.nlm.nih.gov/32071785. doi: 10.1016/j.jare.2019.10.005
87. Périchon B, Courvalin P. Staphylococcus aureus VRSA-11B is a constitutive vancomycin-resistant mutant of vancomycin-dependent VRSA-11A. Antimicrob Agents Chemother [Internet]. 2012 [cited 2023 Oct 25];56(9):4693-6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3421854. doi: 10.1128/AAC.00454-12
88. Li G, Walker MJ, De Oliveira DMP. Vancomycin resistance in enterococcus and Staphylococcus aureus. Microorganisms [Internet]. 2023 [cited 2023 Nov 13];11(1):24. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866002. doi: 10.3390/microorganisms11010024
89. Shariati A, Dadashi M, Moghadam MT, van Belkum A, Yaslianifard S, Darban-Sarokhalil D. Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Sci Rep [Internet]. 2020 [cited 2023 Nov 13] ;10(1):12689. Available from: https://pubmed.ncbi.nlm.nih.gov/32728110. doi: 10.1038/s41598-020-69058-z
90. Kim JW, Lee KJ. Single-nucleotide polymorphisms in a vancomycin-resistant Staphylococcus aureus strain based on whole-genome sequencing. Arch Microbiol [Internet]. 2020 [cited 2023 Oct 25]; 202(8):2255-61. Available from: https://pubmed.ncbi.nlm.nih.gov/32535788. doi: 10.1007/s00203-020-01906-y
91. Haas W, Singh N, Lainhart W, Mingle L, Nazarian E, Mitchell K, et al. Genomic analysis of vancomycin-resistant Staphylococcus aureus isolates from the 3rd case identified in the United States reveals chromosomal integration of the vanA locus. Microbiol Spectr [Internet]. 2023 [cited 2023 Oct 3];11(2):e04317-22. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100801. doi: 10.1128/spectrum.04317-22
92. Unni S, Siddiqui TJ, Bidaisee S. Reduced susceptibility and resistance to vancomycin of Staphylococcus aureus: A review of global incidence patterns and related genetic mechanisms. Cureus [Internet]. 2021 [cited 2023 Nov 15]; 13(10):e18925. Available from: https://pubmed.ncbi.nlm.nih.gov/34812309. doi: 10.7759/cureus.18925
93. Giulieri SG, Tong SYC, Williamson DA. Using genomics to understand meticillin- and vancomycin-resistant Staphylococcus aureus infections. Microb Genom [Internet]. 2020 [cited 2023 Nov 1];6(1):e000324. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067033. doi: 10.1099/mgen.0.000324
94. Abdeta A, Beyene D, Negeri AA. Antimicrobial resistance patterns of Staphylococcus aureus and enterococcus species at the Ethiopian Public Health Institute, Ethiopia: A five-year retrospective analysis. Infect Drug Resist [Internet]. 2023 [cited 2023 Nov 13]; 16:6155-66. Available from: https://www.dovepress.com/antimicrobial-resistance-patterns-of-staphylococcus-aureus-and-enteroc-peer-reviewed-fulltext-article-IDR. doi: https://doi.org/10.2147/IDR.S429687
95. Marty FM, Yeh WW, Wennersten ChB, Venkataraman L, Albano E, Alyea EP, et al. Emergence of a clinical daptomycin-resistant Staphylococcus aureus isolate during treatment of methicillin-resistant Staphylococcus aureus bacteremia and osteomyelitis. J Clin Microbiol [Internet]. 2006 [cited 2023 Nov 6];44(2):595-7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392688. doi: 10.1128/JCM.44.2.595-597.2006
96. Lasek-Nesselquist E, Lu J, Schneider R, Ma Z, Russo V, Mishra S. Insights into the evolution of Staphylococcus aureus daptomycin resistance from an in vitro bioreactor model. Front Microbiol [Internet]. 2019 [cited 2023 Nov 8]; 10: 345. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413709. doi: 10.3389/fmicb.2019.00345
97. Bhattacharyya D, Banerjee J, Bandyopadhyay S, Mondal B, Nanda PK, Samanta I, et al. First report on vancomycin-resistant Staphylococcus aureus in bovine and caprine milk. Microb Drug Resist. 2016;22(8):675-81. doi:10.1089/mdr.2015.0330
98. Jiang S, Zhuang H, Zhu F, Wei X, Zhang J, Sun L, et al. The role of mprF mutations in seesaw effect of daptomycin-resistant methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother [Internet]. 2022 [cited 2023 Nov 8]; 66(1): e01295-21. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8765318. doi: 10.1128/AAC.01295-21
99. Barros EM, Martin MJ, Selleck EM, Lebreton F, Sampaio JLM, Gilmore MS. Daptomycin resistance and tolerance due to loss of function in Staphylococcus aureus dsp1 and asp23. Antimicrob Agents Chemother [Internet]. 2019 [cited 2023 Nov 8];63(1): e01542-18. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325204. doi: 10.1128/AAC.01542-18
100. Mediati DG, Wong JL, Gao W, McKellar S, Pang ChNI, Wu S, et al. RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3′UTR required for intermediate vancomycin resistance. Nat Commun [Internet]. 2022 [cited 2023 Nov 13];13(1):3558. Available from: https://pubmed.ncbi.nlm.nih.gov/35732665. doi: 10.1038/s41467-022-31177-8
Publicado
2024-08-10
Sección
ARTÍCULOS DE REVISIÓN